ANNUAL REPORT TO NC-140

2014 Apple Rootstock Trials

November, 2015 -- Davis, CA

John A. Cline

2015 was the second year of the 2014 NC-140 Apple Rootstock Trials. Rootstocks

included in this experiment are indicated below. All data presented in this report were collected in 2014 and analyzed by the data coordinator. All cooperators submitted data except three sites (NY, ON-Ridgetown, Indiana).

An Excel data template worksheet was provided to all cooperators to submit data. This generally worked well, however there were some data issues at some sites. Please use the Excel data template when submitting data -- a new worksheet template will be provided each year. Everyone is encouraged to review their data and make sure that all measurements are in the units requested. Only, include only those data requested in the protocol (provided in a separate file).

Summary of Data Submission

1. Review the data protocol located on the nc14o website (<u>link</u>)

Rootstocks, cultivars and locations involved in the 2014 NC-140 Apple Rootstock Trial. Honeycrisp plantings are spaced 4'×12' (1.22m×3.66m) and Aztec Fuji plantings are spaced 5'×13' (1.52m×3.96m). All trees are trained to the tall spindle orchard system.

Rootstocks	Honeycrisp sites	Aztec Fuji sites
B.10	ID	AL
G.11	IN*	ID
G.202	MA	GA
G.214	ME	NJ
G.30	MEX	ON (Simcoe)
G.41	MI*	PA
G.5890	MN	SC
G.935	NJ	UT
G.969	NY*	
M.26 EMLA	ON (Simcoe)	
M.7	ON (Ridgetown)*	
M.9 T337	PA	
MM.106	VA	
V.1	WA	
V.5	WI	
V.6		
V.7		
*	1 15 0011	

No data were submitted for 2014.

- 2. Be sure to correct any errors in the data structure (treatments, reps) communicated by the data coordinator to you in 2014.
- 3. Submit only the data requested using the Excel data template worksheet, which can be found on the nc-140 website (<u>link</u>)
- 4. Submit only data collected in 2016 (not prior years) and use the correct units.

NC 140 Accomplishments Report Statement

2014 NC-140 Apple Rootstock Planting

The 2014 Apple rootstock planting was established in 15 locations in the United States (AL, ID, IN, MA, ME, MI, MN, GA, NJ, NY, PA, SC, UT, VA, WA, WI), two in Canada, and one in Mexico (http://bit.ly/1zv3wCc). The trial consists of the following rootstocks: B.10, G.11, G.202, G.214, G.30, G.41, G.5890, G.935, G.969, M.26 EMLA, M.9 T337, V.1, V.5, V.6, V.7. The trial is being coordinated by John Cline who has also responsible for data analyses. This trial has two cultivars: Aztec Fuji (AL, ID, GA, NJ, ON, PA, SC, UT) and Honeycrisp (ID, IN, MA, ME, Mexico, MI, MN, NJ, NY, Ontario, PA, VA, WA, WI), planted to a 'tall spindle' systems at a 5 x 12 ft, and 4 x12 ft spacing, respectively. Trees are planted using a randomized block design with single trees serving as experimental units. Each site selected a pollinizer variety since some sites are very limited in adapted varieties. Trees were established in the spring of 2014. The trees were propagated by Willow Drive Nursery, WA. Data protocols have been established for 2014, 2015 and 2016. In 2014, the following data were recorded: 1) initial trunk diameter measured at planting 30cm above graft union; 2) number of side branches >10 cm at planting; 3) trunk circumference in the fall of 2014; 4) height of the graft union above soil; 5) tree status at the end of the 2014 growing season. In 2016, trees were fruiting and similar data as 2014 were recorded in addition to yield data.

Figure 1. Location of participants of the 2014 NC-140 Apple rootstock planting evaluation of 'Aztec Fuji' (red) and 'Honeycrisp' (teal) in Canada, the United States, and Mexico. Map updated as of Nov 10, 2014 (not all participants provided gps coordinates). For an updated interactive map visit <u>http://bit.ly/1zv3wCc</u>

HONEYCRISP DATA

Table 1. Number of side branches >10 cm at planting, union height at planting, spring trunk crosssectional area, fall trunk cross-sectional area, union breakage, and survival of Honeycrisp apple trees in the 2014 NC-140 Apple Rootstock Trial. Includes 2014 data from ID, MA, ME, MEX, MN, NJ, ON (Simc), PA, VA, WA, and WI.

			IC), PA, VA, VV <i>P</i>			
	Number		Spring	Fall		
	of side	Union	trunk cross-	trunk cross-	Union	
	branches	height		sectional area	breakage	Survival
Rootstock	(no.)	(cm)	(cm ²)	(cm ²)	(%)	(%)
B.10	7.4	10.4	1.6	2.4	0	100
G.11	3.7	13.5	1.0	1.6	0	97
G.202	4.3	12.5	1.0	1.6	2	98
G.214	12.8	13.4	1.6	2.2	0	100
G.30	16.6	13.1	2.1	3.4	0	96
G.41	4.0	13.0	1.0	1.6	0	95
G.5890	14.7	12.8	2.3	3.3	0	98
G.935	5.4	13.9	1.1	1.9	0	99
G.969	8.1	12.9	1.4	2.2	2	98
M.26 EMLA	6.0	13.7	1.3	2.1	0	98
M.7	6.0	8.1	1.5	1.8	0	100
M.9 T337	4.9	14.2	1.3	2.0	0	98
MM.106	7.3	7.9	1.4	2.0	0	100
V.1	9.5	13.4	2.1	3.2	0	100
V.5	11.1	11.5	2.1	3.0	0	100
V.6	11.8	11.5	2.0	3.1	6	92
V.7	11.1	11.6	1.9	2.8	3	95
Means	8.5	12.8	1.5	2.4	1	97
LSD (P=0.05)					******	
HSD (P=0.05)						

Table 2. Number of side branches >10 cm at planting (2014, no.) of Honeycrisp apple trees at individual plantinglocations in the 2014 NC-140 Apple Rootstock Trial.

Rootstock	ID	IN	MA	ME	MI	MN	MEX	NJ	NY	ON (Simc)	ON (Ridg)	PA	VA	WA	WI	Means
B.10	у	nd ^z		5.8	nd			11.0		7.7	nd		4.0		8.9	7.4
G.11		nd	2.1	4.7	nd	1.9	3.6	5.6	nd	3.0	nd		1.5	7.8	3.7	3.7
G.202	7.7	nd	0.7	3.6	nd	4.0	1.5	5.0	nd	1.6	nd		4.7	10.8	4.5	4.3
G.214		nd	10.3	13.6	nd	7.6		18.9	nd	11.5	nd		6.9	15.0	18.7	12.8
G.30	22.9	nd	12.3	20.0	nd	10.6	14.2	21.1	nd	8.4	nd		14.2	20.0	22.8	16.6
G.41		nd	3.8	0.4	nd	2.9	4.0	5.3	nd	5.2	nd		2.1	6.3	6.5	4.0
G.5890		nd	13.8		nd	6.3			nd		nd	13.8		17.8	21.3	14.7
G.935		nd	3.5	4.2	nd	1.4		5.5	nd	7.7	nd		3.3	11.9	6.7	5.4
G.969	11.9	nd	6.4	7.9	nd	3.3	6.0	12.2	nd	8.2	nd	4.3	5.1	11.8	14.2	8.1
M.26 EMLA	9.9	nd	4.6	5.6	nd	2.2	7.3	7.6	nd	7.0	nd	2.9	2.1	8.4	8.0	6.0
M.7		nd			nd				nd	6.0	nd					6.0
M.9 T337		nd	3.8		nd	1.7	4.8	7.9	nd	5.7	nd	2.1	2.3	9.6	6.4	4.9
MM.106		nd			nd				nd	7.3	nd					7.3
V.1	11.3	nd	5.8	13.8		3.7		10.6	nd		nd	6.8	8.6	11.4		9.5
V.5		nd	6.3	16.4	nd	8.9		10.3	nd	11.3	nd	5.1	9.5	16.7		11.1
V.6		nd	10.9		nd	4.8	6.0	17.4	nd	12.2	nd	10.1	7.2	18.3	18.0	11.8
V.7		nd	8.3	13.0	nd	3.1		13.5	nd	11.0	nd	6.8	8.8	17.3	19.6	11.1
Means	12.7	nd	6.5	8.7	nd	4.4	6.0	10.8	nd	7.5	nd	6.3	5.7	13.3	12.5	
LSD (P=0.05) HSD (P=0.05)																

^z No data were submitted.

Table 3. Union height at planting (2014, cm) of Honeycrisp apple trees at individual planting locations in the 2014 NC-140 Apple Rootstock Trial.

Rootstock	ID	IN	MA	ME	MI	MN	MEX	NJ	NY	ON (Simc)	ON (Ridg)	PA	VA	WA	WI	Means
B.10	^y	nd ^z		11.3	nd			9.6	nd	6.4	nd		14.0		10.7	10.4
G.11		nd	19.1	12.7	nd	11.6	11.3	14.2	nd	7.7	nd		16.9	14.8	12.9	13.5
G.202	12.7	nd	16.8	10.7	nd	12.6	10.1	12.1	nd	7.6	nd		16.1	13.7	12.3	12.5
G.214		nd	18.2	12.5	nd	13.3		12.3	nd	7.1	nd		16.6	15.2	12.3	13.4
G.30	12.2	nd	20.7	12.8	nd	12.5	11.2	12.5	nd	6.7	nd		16.5	12.9	12.7	13.1
G.41		nd	16.6	11.3	nd	11.4	10.5	12.6	nd	7.8	nd		18.1	15.4	13.4	13.0
G.5890		nd	16.7		nd	10.8			nd		nd	11.8		12.9	11.8	12.8
G.935		nd	18.7	12.9	nd	13.6		15.1	nd	7.8	nd		15.2	15.2	12.7	13.9
G.969	10.9	nd	17.4	12.8	nd	13.6	10.9	13.3	nd	7.6	nd	11.8	17.5	14.3	12.7	12.9
M.26 EMLA	10.7	nd	19.1	14.3	nd	14.4	11.6	13.5	nd	6.6	nd	14.0	17.6	14.0	14.8	13.7
M.7		nd			nd				nd	8.1	nd					8.1
M.9 T337		nd	20.1		nd	14.2	10.5	13.3	nd	6.8	nd	14.1	17.9	16.8	13.3	14.2
MM.106		nd			nd				nd	7.9	nd					7.9
V.1	12.2	nd	17.9	11.3	nd	12.9		11.4	nd		nd	11.7	17.7	12.5	13.0	13.4
V.5		nd	13.0	9.0	nd	12.8		11.6	nd	7.9	nd	10.5	14.3	12.6	10.7	11.5
V.6		nd	15.0		nd	10.2	8.7	12.1	nd	6.0	nd	11.3	14.8	13.2	11.2	11.5
V.7		nd	14.6	11.9	nd	11.9		11.4	nd	6.1	nd	11.7	14.3	11.6	10.9	11.6
Means		nd	17.5	12.1	nd	12.7	10.6	12.6	nd	7.2	nd	12.1	16.3	13.9	12.4	
LSD (P=0.05)																
HSD (P=0.05)																

^y Rootstock was not included at planting location.

^z No data were submitted.

Table 4. Spring trunk cross-sectional area (2014, cm²) of Honeycrisp apple trees at individual plantinglocations in the 2014 NC-140 Apple Rootstock Trial.

Rootstock	ID	IN	MA	ME	MI	MN	MEX	NJ	NY	ON (Simc)	ON (Ridg)	PA	VA	WA	WI	Means
B.10	y	nd ^z		1.4	nd			1.7	nd	2.1	nd		1.7		1.4	1.6
G.11		nd	0.9	0.9	nd	1.1	0.8	1.1	nd	1.0	nd		0.8	1.2	0.9	1.0
G.202	1.2	nd	0.7	0.8	nd	1.3	0.6	1.0	nd	0.8	nd		1.1	1.6	0.9	1.0
G.214		nd	1.6	1.4	nd	1.6		1.5	nd	1.6	nd		1.5	1.9	1.6	1.6
G.30	2.4	nd	2.4	2.0	nd	2.1	1.5	2.2	nd	1.5	nd		1.9	2.7	2.4	2.1
G.41		nd	0.9	0.6	nd	1.1	0.9	0.9	nd	1.1	nd		0.9	1.2	0.9	1.0
G.5890		nd	2.3		nd	1.7			nd		nd	2.5		2.4	2.6	2.3
G.935		nd	1.0	0.9	nd	0.8		1.0	nd	1.4	nd		1.0	1.9	1.0	1.1
G.969	1.3	nd	1.3	1.2	nd	1.4	1.0	1.4	nd	1.4	nd	1.7	1.3	1.5	1.5	1.4
M.26 EMLA	1.2	nd	1.2	1.1	nd	1.3	1.1	1.4	nd	1.4	nd	1.4	1.1	1.7	1.0	1.3
M.7		nd			nd				nd	1.5	nd					1.5
M.9 T337		nd	1.2		nd	1.3	1.0	1.2	nd	1.4	nd	1.7	1.1	1.5	1.1	1.3
MM.106		nd			nd				nd	1.4	nd					1.4
V.1	1.8	nd	2.0	1.8	nd	1.9		2.3	nd		nd	2.4	2.0	2.5	2.0	2.1
V.5		nd	1.6	1.7	nd	2.6		1.4	nd	2.2	nd	1.9	2.0	3.3	2.1	2.1
V.6		nd	2.0		nd	1.6	1.1	2.0	nd	2.1	nd	2.5	1.8	2.9	2.0	2.0
V.7		nd	1.5	1.5	nd	1.1		1.6	nd	2.1	nd	2.0	1.9	2.7	2.2	1.9
Means	1.6	nd	1.5	1.3	nd	1.5	1.0	1.5	nd	1.5	nd	2.0	1.4	2.1	1.6	
LSD (P=0.05)																

^z No data were submitted.

Table 5. Fall trunk cross-sectional area (2014, cm²) of Honeycrisp apple trees at individual planting locations in the 2014 NC-140 Apple Rootstock Trial.

						-										
Rootstock	ID	IN	MA	ME	MI	MN	MEX	NJ	NY	ON (Simc)	ON (Ridg)	PA	VA	WA	WI	Means
B.10	^y	nd^z		2.4	nd			3.3	nd	2.2	nd		2.1		2.0	2.4
G.11		nd	1.6	1.6	nd	1.2	1.4	2.9	nd	1.2	nd		1.5	1.4	1.6	1.6
G.202	2.4	nd	1.1	1.5	nd	1.3	1.1	2.7	nd	1.2	nd		1.6	1.9	1.5	1.6
G.214		nd	2.3	2.1	nd	1.7		3.1	nd	2.1	nd		2.1	2.1	2.4	2.2
G.30	4.9	nd	3.8	3.2	nd	2.2	3.1	4.8	nd	2.2	nd		2.7	3.1	3.9	3.4
G.41		nd	1.8	1.3	nd	1.2	1.5	2.5	nd	1.2	nd		1.5	1.4	2.0	1.6
G.5890		nd	3.8		nd	1.8			nd		nd	3.8		2.8	4.0	3.3
G.935		nd	2.0	1.6	nd	0.9		2.6	nd	1.7	nd		1.7	2.2	2.1	1.9
G.969	2.9	nd	2.2	2.2	nd	1.4	1.8	3.7	nd	1.6	nd	2.6	1.7	1.7	2.5	2.2
M.26 EMLA	2.9	nd	2.0	1.9	nd	1.3	1.8	3.3	nd	1.8	nd	2.4	1.6	1.9	1.9	2.1
M.7		nd			nd				nd	1.8	nd					1.8
M.9 T337		nd	1.9		nd	1.2	1.8	3.2	nd	1.6	nd	2.5	1.7	1.8	1.8	2.0
MM.106		nd			nd				nd	2.0	nd					2.0
V.1	3.5	nd	3.2	3.0	nd	2.1		4.3	nd		nd	3.7	2.9	2.9	3.1	3.2
V.5		nd	3.0	2.8	nd	2.9		3.5	nd	2.7	nd	2.7	2.6	3.5	3.0	3.0
V.6		nd	3.8		nd	1.8	2.0	4.2	nd	2.6	nd	3.8	2.6	3.1	3.3	3.1
V.7		nd	2.8	2.4	nd	1.3		4.3	nd	2.6	nd	2.9	2.5	3.2	3.1	2.8
Means LSD (P=0.05)	*****	nd	2.5	2.1	nd	1.6	1.8	3.4	nd	1.9	nd	3.0	2.1	2.4	2.5	
HSD (P=0.05)																

HSD (P=0.05) ^y Rootstock was not included at planting location.

^z No data were submitted.

HSD (P=0.05) ^y Rootstock was not included at planting location.

Table 6. Union breakage (2014, %) of Honeycrisp apple trees at individual planting locations in the 2014 NC-140 Apple Rootstock Trial.

							J-140	<u>uhh</u>			ai.					
Rootstock	ID	IN	MA	ME	MI	MN	MEX	NJ	NY	ON (Simc)	ON (Ridg)	PA	VA	WA	WI	Means
B.10	^y	nd^z		0	nd			0	nd	0	nd		0		0	0
G.11		nd	0	0	nd	0	0	0	nd	0	nd		0	0	0	0
G.202	0	nd	0	0	nd	0	0	0	nd	0	nd		10	0	0	2
G.214		nd	0	0	nd	0		0	nd	0	nd		0	0	0	0
G.30	0	nd	0	0	nd	0	0	0	nd	0	nd		0	0	0	0
G.41		nd	0	0	nd	0	0	0	nd	0	nd		0	0	0	0
G.5890		nd	0		nd	0			nd		nd	0		0	0	0
G.935		nd	0	0	nd	0		0	nd	0	nd		0	0	0	0
G.969	0	nd	0	20	nd	0	0	0	nd	0	nd	0	0	0	0	2
M.26 EMLA	0	nd	0	0	nd	0	0	0	nd	0	nd	0	0	0	0	0
M.7		nd			nd				nd	0	nd					0
M.9 T337		nd	0		nd	0	0	0	nd	0	nd	0	0	0	0	0
MM.106		nd			nd				nd	0	nd					0
V.1	0	nd	0	0	nd	0		0	nd		nd	0	0	0	0	0
V.5		nd	0	0	nd	0		0	nd	0	nd	0	0	0	0	0
V.6		nd	0		nd	33	13	11	nd	0	nd	0	0	0	0	6
V.7		nd	0	0	nd	11		0	nd	0	nd	0	0	0	13	3
Means	0	nd	0	2	nd	4	1	1	nd	0	nd	0	1	0	1	
LSD (P=0.05)																
HSD (P=0.05)	۱															

HSD (P=0.05)

^y Rootstock was not included at planting location.

^z No data were submitted.

Table 7. Survival (2014, %) of Honeycrisp apple trees at individual planting locations in the 2014 NC-140 Apple
Rootstock Trial.

Rootstock	ID	IN	MA	ME	MI	MN	MEX	NJ	NY	ON (Simc)	ON (Ridg)	PA	VA	WA	WI	Means
B.10	y	nd ^z		100	nd			100	nd	100	nd		100		100	100
G.11		nd	100	100	nd	100	70	100	nd	100	nd		100	100	100	97
G.202	100	nd	100	100	nd	90	100	100	nd	100	nd		90	100	100	98
G.214		nd	100	100	nd	100		100	nd	100	nd		100	100	100	100
G.30	100	nd	100	100	nd	100	60	100	nd	100	nd		100	100	100	96
G.41		nd	100	100	nd	100	80	100	nd	80	nd		100	100	100	95
G.5890		nd	100		nd	89			nd		nd	100		100	100	98
G.935		nd	100	100	nd	100		100	nd	90	nd		100	100	100	99
G.969	100	nd	100	80	nd	100	100	100	nd	100	nd	100	100	100	100	98
M.26 EMLA	100	nd	100	100	nd	100	80	100	nd	100	nd	100	100	100	100	98
M.7		nd			nd				nd	100	nd					100
M.9 T337		nd	100		nd	100	80	100	nd	100	nd	100	100	100	100	98
MM.106		nd			nd				nd	100	nd					100
V.1	100	nd	100	100	nd	100		100	nd		nd	100	100	100	100	100
V.5		nd	100	100	nd	100		100	nd	100	nd	100	100	100	100	100
V.6		nd	100		nd	67	75	78	nd	100	nd	100	100	100	100	92
V.7		nd	100	100	nd	89		88	nd	88	nd	100	100	100	88	95
Means	100	nd	100	98	nd	96	80	98	nd	97	nd	100	99	100	99	
LSD (P=0.05)																
	۱															

 $\frac{\text{HSD (P=0.05)}}{\text{Y Rootstock was not included at planting location.}}$

^z No data were submitted.

FUJI DATA

Table 1. Number of side branches >10 cm at planting, union height at planting, spring trunk crosssectional area, fall trunk cross-sectional area, union breakage, and survival of Aztec Fuji apple trees in the 2014 NC-140 Apple Rootstock Trial. Includes 2014 data from AL, ID, GA, NJ, ON (Simcoe),

			PA, SC, and U	Γ.		
	Number		Spring	Fall		
	of side	Union	trunk cross-	trunk cross-	Union	
	branches	height	sectional area	sectional area	breakage	Survival
Rootstock	(no.)	(cm)	(cm ²)	(cm ²)	(%)	(%)
B.10	5.2	10.4	1.5	3.2	0	100
G.11	8.1	13.0	1.2	3.1	0	99
G.202	5.0	11.4	1.1	3.2	0	93
G.214	8.1	11.3	1.7	3.4	1	97
G.30	9.8	12.4	1.9	5.0	0	100
G.41	4.8	10.8	1.5	3.9	0	100
G.935	9.2	12.4	1.7	4.1	0	100
G.969	7.8	13.8	1.5	4.6	0	98
M.26 EMLA	2.7	13.0	1.1	3.1	0	100
M.9 T337	7.9	12.0	1.3	3.4	0	97
V.1	9.1	12.3	1.8	4.6	0	100
V.5	13.1	10.0	2.4	5.8	0	99
V.6	13.9	9.8	2.5	6.1	0	100
V.7	11.3	10.2	2.2	5.1	0	100
Means	8.4	11.6	1.7	4.2	0	99
LSD (P=0.05)						
HSD (P=0.05)						

Table 2. Number of side branches >10 cm at planting (2014, no.) of Aztec Fuji apple trees at individual planting locations in the 2014 NC-140 Apple Rootstock Trial.

		1008		2014 110			iai.		
Rootstock	AL	GA	ID	NJ	ON (Simc)	PA	SC	UT	Means
B.10	6.3	2.6	7.3	^y	5.3		5.1	4.7	5.2
G.11	9.4	4.3	9.3	12.3	5.5		5.1	10.7	8.1
G.202	5.8	5.5	5.0	2.7	2.0		5.5	8.8	5.0
G.214	6.1	5.5	14.5	4.6	7.3	8.5	9.4	8.8	8.1
G.30	9.3	8.4	11.7	11.3	7.6		10.6	9.9	9.8
G.41	5.3	3.5	5.1		5.0		5.1	5.0	4.8
G.935	10.7	9.8	10.4	8.1	6.9		9.6	8.8	9.2
G.969	8.4	5.2	10.5				8.2	6.8	7.8
M.26 EMLA	6.1	1.8	2.7	2.5	1.4	2.1	1.6	3.7	2.7
M.9 T337	11.4	5.7	8.4	11.5	6.5	3.8	7.5	8.0	7.9
V.1	8.7	7.1	10.8	8.6		8.7	9.5	10.5	9.1
V.5	11.4	10.4	16.9	12.8	9.9	12.5	16.1	14.4	13.1
V.6	25.2	10.9	15.7	11.9	8.4	13.5	12.8	12.6	13.9
V.7	11.9	10.0	12.3	9.9	10.9	12.3	11.6	11.8	11.3
Means	9.8	6.5	10.0	8.7	6.4	8.8	8.4	8.9	
LSD (P=0.05)									
HSD (P=0.05)									

Table 3. Union height at planting (2014, cm) of Aztec Fuji apple trees at individual planting locations in the
2014 NC-140 Apple Rootstock Trial.

Rootstock	AL	GA	ID	NJ .	ON (Simc)	PA	SC	UT	Means
B.10	14.1	10.7	7.5	у	7.7		13.1	9.2	10.4
G.11	17.9	14.9	9.8	11.9	9.1		16.1	11.0	13.0
G.202	16.6	13.2	8.8	8.1	9.1		14.9	8.7	11.4
G.214	17.1	12.2	9.8	10.5	8.1	9.8	15.1	8.6	11.3
G.30	19.2	13.2	10.4	11.4	7.8		15.7	9.4	12.4
G.41	16.5	10.3	8.2		7.7		13.8	8.5	10.8
G.935	19.3	14.7	9.2	10.3	8.9		15.1	9.2	12.4
G.969	20.3	14.5	9.2				15.8	9.0	13.8
M.26 EMLA	20.9	14.4	9.8	11.6	7.4	12.7	16.4	11.0	13.0
M.9 T337	17.1	14.3	11.5	8.5	8.5	11.3	15.8	9.4	12.0
V.1	17.0	11.9	11.0	10.3		10.8	15.8	9.0	12.3
V.5	17.7	11.2	8.2	6.8	7.5	9.4	12.9	6.5	10.0
V.6	15.7	10.2	8.2	8.9	8.9	9.1	10.8	6.2	9.8
V.7	17.1	12.7	8.8	7.5	7.9	8.0	12.2	7.7	10.2
Means	17.6	12.7	9.3	9.6	8.2	10.1	14.5	8.8	
LSD (P=0.05)									
HSD (P=0.05)									

Table 4. Spring trunk cross-sectional area (2014, cm²) of Aztec Fuji apple trees at individual planting locations in the2014 NC-140 Apple Rootstock Trial.

Rootstock	AL	GA	ID	NJ	ON (Simc)	PA	SC	UT	Means
B.10	1.8	1.2	1.9	^y	2.3		1.8	1.8	1.5
G.11	1.4	1.3	1.2	1.4	1.4		1.5	1.4	1.2
G.202	1.7	1.4	1.3	0.8	1.0		1.4	2.3	1.1
G.214	1.5	1.4	2.6	1.4	2.1	2.2	2.1	2.2	1.7
G.30	2.8	1.9	2.2	2.5	2.3		2.0	2.1	1.9
G.41	2.0	1.4	1.7		2.2		1.8	2.2	1.5
G.935	2.3	2.0	2.0	1.9	2.1		1.9	1.9	1.7
G.969	2.0	1.3	2.1				1.6	1.7	1.5
M.26 EMLA	1.4	1.3	1.1	1.4	1.3	1.5	1.1	1.4	1.1
M.9 T337	1.9	1.4	1.1	1.3	1.6	1.6	1.3	1.3	1.3
V.1	2.5	2.0	1.8	2.1		2.4	1.8	2.2	1.8
V.5	2.7	2.2	3.2	2.2	3.1	3.1	2.8	3.6	2.4
V.6	4.0	2.2	3.2	2.4	2.4	3.2	2.9	2.7	2.5
V.7	2.8	2.3	2.4	1.8	2.9	3.0	2.1	2.5	2.2
Means	2.2	1.7	2.0	1.7	2.1	2.4	1.9	2.1	
LSD (P=0.05)									
HSD (P=0.05)									

 Table 5. Fall trunk cross-sectional area (2014, cm²) of Aztec Fuji apple trees at individual planting locations in the

 2014 NC-140 Apple Rootstock Trial.

G.11 2 G.202 3 G.214 2	2.7 2.5 3.0	1.8 2.4	5.2 5.3	y	2.4				
G.202 G.214	-		53		∠.4		3.6	3.7	3.2
G.214 2	3.0		0.0	2.6	1.7		3.2	4.4	3.1
		2.7	5.0	1.7	1.2		3.3	5.3	3.2
C 30	2.3	2.3	5.7	2.4	2.2	2.8	4.5	4.6	3.4
0.00 2	4.5	4.6	7.9	3.8	2.7		5.6	6.1	5.0
G.41 2	2.6	3.0	5.7		2.4		3.9	5.7	3.9
G.935	3.9	4.2	5.6	3.3	2.2		4.7	4.7	4.1
G.969 4	4.5	2.5	6.0				4.7	5.2	4.6
M.26 EMLA	3.0	3.2	4.7	2.5	1.6	2.0	3.7	4.2	3.1
M.9 T337 3	3.7	3.1	5.5	2.6	1.8	2.1	3.5	4.5	3.4
V.1 3	3.9	4.6	6.4	3.8		3.3	5.1	5.3	4.6
V.5 4	4.6	4.9	10.1	3.7	3.3	4.0	7.6	8.0	5.8
V.6 6	6.4	6.2	10.1	3.8	2.9	4.1	7.4	7.4	6.1
V.7 4	4.9	5.6	7.4	3.5	3.2	3.7	5.8	6.8	5.1
Means	3.8	3.7	6.5	3.1	2.3	3.1	4.7	5.4	

Table 6. Union breakage (2014, %) of Aztec Fuji apple trees at individual planting locations in the 2014 NC-140 Apple Rootstock Trial.

			20141	NC-140 A		mai.			
Rootstock	AL	GA	ID	NJ	ON (Simc)	PA	SC	UT	Means
B.10	0	0	0	y	0		0	0	0
G.11	0	0	0	0	0		0	0	0
G.202	0	0	0	0	0		0	0	0
G.214	11	0	0	0	0	0	0	0	1
G.30	0	0	0	0	0		0	0	0
G.41	0	0	0		0		0	0	0
G.935	0	0	0	0	0		0	0	0
G.969	0	0	0				0	0	0
M.26 EMLA	0	0	0	0	0	0	0	0	0
M.9 T337	0	0	0	0	0	0	0	0	0
V.1	0	0	0	0		0	0	0	0
V.5	0	0	0	0	0	0	0	0	0
V.6	0	0	0	0	0	0	0	0	0
V.7	0	0	0	0	0	0	0	0	0
Means	1	0	0	0	0	0	0	0	
LSD (P=0.05)									
HSD (P=0.05)									

Rootstock	AL	GA	ID	NJ	ON (Simc)	PA	SC	UT	Means
B.10	100	100	100	y	100		100	100	100
G.11	100	100	100	100	100		100	90	99
G.202	100	80	100	100	70		100	100	93
G.214	89	100	100	100	90	100	100	100	97
G.30	100	100	100	100	100		100	100	100
G.41	100	100	100		100		100	100	100
G.935	100	100	100	100	100		100	100	100
G.969	100	100	100				90	100	98
M.26 EMLA	100	100	100	100	100	100	100	100	100
M.9 T337	90	100	100	89	100	100	100	100	97
V.1	100	100	100	100		100	100	100	100
V.5	100	100	100	100	100	100	90	100	99
V.6	100	100	100	100	100	100	100	100	100
V.7	100	100	100	100	100	100	100	100	100
Means	99	99	100	99	97	100	99	99	
LSD (P=0.05) HSD (P=0.05)									

Table 7. Survival (2014, %) of Aztec Fuji apple trees at individual planting locations in the 2014 NC-140 Apple Rootstock Trial.